Singlet-Triplet Relaxation in Two-electron Silicon Quantum Dots
نویسندگان
چکیده
We investigate the singlet-triplet relaxation process of a two electron silicon quantum dot. In the absence of a perpendicular magnetic field, we find that spin-orbit coupling is not the main source of singlet-triplet relaxation. Relaxation in this regime occurs mainly via virtual states and is due to nuclear hyperfine coupling. In the presence of an external magnetic field perpendicular to the plane of the dot, the spin-orbit coupling is important and virtual states are not required. We find that there can be strong anisotropy for different field directions: parallel magnetic field can increase substantially the relaxation time due to Zeeman splitting, but when the magnetic field is applied perpendicular to the plane, the enhancement of the spin-orbit effect shortens the relaxation time. We find the relaxation to be orders of magnitude longer than for GaAs quantum dots, due to weaker hyperfine and spin-orbit effects.
منابع مشابه
Effect of Temperature and Pressure on Correlation Energy in a Triplet State of a Two Electron Spherical Quantum Dot
The combined effect of hydrostatic pressure and temperature on correlation energy in a triplet state of two electron spherical quantum dot with square well potential is computed. The result is presented taking GaAs dot as an example. Our result shows the correlation energies are i)negative in the triplet state contrast to the singlet state ii) it increases with increase in pressure iii)further...
متن کاملSpin relaxation in lateral quantum dots: Effects of spin-orbit interaction
We report results of calculations of the effect of spin-orbit interaction on electron spin relaxation in a lateral quantum dot. Our study is motivated by puzzling results of high source-drain transport measurements of singlet-triplet transitions of two electrons in lateral and vertical devices that show a strong asymmetry as a function of the applied magnetic field. Using exact diagonalization ...
متن کاملRelaxation and readout visibility of a singlet-triplet qubit in an Overhauser field gradient
Using single-shot charge detection in a GaAs double quantum dot, we investigate spin relaxation time (T1) and readout visibility of a two-electron singlet-triplet qubit following single-electron dynamic nuclear polarization (DNP). For magnetic fields up to 2 T, the DNP cycle is in all cases found to increase Overhauser field gradients, which in turn decrease T1 and, consequently, reduce readout...
متن کاملCotunneling spectroscopy in few-electron quantum dots.
Few-electron quantum dots are investigated in the regime of strong tunneling to the leads. Inelastic cotunneling is used to measure the two-electron singlet-triplet splitting above and below a magnetic field driven singlet-triplet transition. Evidence for a nonequilibrium two-electron singlet-triplet Kondo effect is presented. Cotunneling allows orbital correlations and parameters characterizin...
متن کاملPauli Spin Blockade in a Highly Tunable Silicon Double Quantum Dot
Double quantum dots are convenient solid-state platforms to encode quantum information. Two-electron spin states can be detected and manipulated using quantum selection rules based on the Pauli exclusion principle, leading to Pauli spin blockade of electron transport for triplet states. Coherent spin states would be optimally preserved in an environment free of nuclear spins, which is achievabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008